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THE EFFECT OF BREAKUP AND COALESCENCE OF BUBBLES 
ON MASS TRANSFER IN A FLUIDIZED BED* 

N.N. BOBKOV and YD.P. GDPAI.0 

The mechanics of interpenetrating and mutually reacting Continua is used 

to study a plane problem, modelling the motion of the solid and liquid 
phase and mass transfer to bubbles during their breakup and coalescence. 
It is assumed that the interphase resistance is described, as in the 
Davidson model /l/, by D'ardy's Law, with the concentration of solid 
phase outside the bubbles remaining constant. The phase velocity field 
and pressure field of the liquid phase are constructed and, the conditions 
for the existence and form of the cloud circulation of the fluid are 
determined near two intersecting or mutually touching circular bubbles. 
A solution of the problem of diffusive material flow to the cloud surface 
is given and the mass transfer coefficient between the bubbles and the 
continuous phase of the fluidized bed is determined. The results obtained 
enable the influence of the breakup and coalescence of the bubbles and the 
presence of a rigid wall near the bubble and of bubble deformation on 
the intensity of the mass transfer process, to be assessed. 

In the majority of cases when systems are fluidized with a gas, 
conditions occur which ensure the formation of moving stable cavities 
practically free of solid particles and resembling the bubbles forming in 
homogeneous liquids. The analysis of the mechanism of motion of the solid 
and liquid phase near such cavities and their mass transfer to the 
continuous phase is important in connection with the practical problem of 
increasing the efficiency of reactors with a fluidized bed in various 
physico-chemical processes. Mass transfer in the reactor can be influenced 
by the deformation of the bubbles during their ascent, the presence of 
various types of obstacles (e.g. heat exchange surfaces, rigid walls, etc.) 
in the working space of the reactor, and the process of breakup and 
coalescence of the bubbles (/2-3/et al.). Earlier studies included that 
of the motion and mass transfer of a single circular (spherical) bubble 
/l-S/, the motion of a bubble with concave rear part /6/ and of a circular 
bubble between parallel walls /7/. 

1. Phase flow fields around the cavity. Let us consider the simplest plane model 
of the motion of two touching or intersecting bubbles rising with some constant velocity V,.,, 
through a homogeneous fluidized bed , and representing a cavity whose size and form does not 
change with time. The flow of fluidizing agent is homogeneous at large distances from the 
cavity, directed vertically upwards , and its velocity (in the gaps between particles) is 
equal to I+, in the laboratory coordinate system. 

We shall consider plane cavities whose form is described by two different circular segments 
(of radius Q,) constructed in a common section (Fig.1). According to experimental data (/2/, 
ch.4) single collapsing bubbles in fluidized systems have a form similar to the one considered 
here. Moreover, the motion of such a cavity can serve as the simplest model of the process 
of coalescence of two single bubbles and of the behaviour of a deformed (or a single circular) 
bubble near a rigid wall. Fig.2 shows tine frames C/2/,' ch.4) depicting the breakup of a 
single bubble in an air-fluidized bed of glass spheres of 230 microns diameter. 

In the simplest model /l/ of a fluidized bed regarded as a double continuum, the initial 
System of locally averaged stationary equations of motion and continuity of the liquid and 
solid phase identified with ideal (in linear scales of the order of the bubble size) incom- 
pressible fluids, has the following form outside the cavity (see e.g. /4/): 

v--w - --k (a)VRr, d,p (WV) w = -V@, + P,) + &pg 
Vv=Vw=O 

(1.1) 

Here v and w, pt and ps are the velocities and pressures of the fluid phase (index f‘) 
and solid phase (index s) respectively, a iS the constant porosity of the bed, P==i -e is 
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the volume concentration of the solid particles, d,is density, 8 is the acceleration due to 
gravity and k(e) is the permeability coefficient characterizing the filtering properties of 
the bed. 

The motion of the fluidizing agent is assumed to be non- 
dispersive in the model adopted, i.e. d,+ 0 iwhen dense 
beds are fluidized with gas, the inertia of the fluid is 
small compared with the inertia of the particles: 4a % 4~) 
so that terms proportional to dl are omitted from (1.1). 

Let us consider the boundary conditions at the cavity 
surface and at infinity. Assuming that the fluid phase is 
inertialess, we find that the boundary condition at the 
surface S of the cavity in question is the condition that 
the fluid pressure is constant /I/ fpt is measured from its 
value on S) 

P! Is = 0 (l.2) 

At infinite distance from the moving cavity, where there 
are no phase flow perturbations caused by the cavity, the 
condition of constancy of the pressure gradient in the fluid- 
izing agent is given in the form 

Fig.1 
(1.3) 

Here y is the vertical coordinate (Ffg.l) and J is a constant equal to the weight of 
unit volume of the continuous phase in the fluidized bed. 

Since the field of external mass forces is conservative , the second and fourth equation 
of (1.1) imply the possibility of constructing a potential field of flow of the solid phase 
as a flow of an ideal incompressible fluid with pressure p, + p8 when rotw = 0. 

After taking the divergence of both sides of the first equation of (1.1) and using the 
equation of phase continuity, we reduce the problem of determining the pressure distribution 
of the fluidizinq agent outside the cavity, taking condition (1.1) into account, to the 
solution of the Dirichlet problem for the Laplace equation 

APP~- 0 (1.4) 

The harmonic function pf must satisfy the condition at infinity (1.3). Using thepressure 
distribution in the gas obtained in this manner , and thS flow field of the solid phase, we 
find, using the first equation of (l-l), the velocity field of the fluidizing agent. 

Fig.2 

Henceforth we shall use in the course of the analysis the following system of dimen- 
sionleSs, orthogonal coaxial coordinates E = 0% - 3% n = In Wr,), depicted in Fig.1. To 

construct the velocity field of the fluid phase, we write the first equation of (2.1) in 
dimensionless form in the system of curvilinear conrdinates ($,n) 

Here g&E and gn,, are the metric tensor components, while the characteristic values of 

the velocities, linear dimension and pressure are represented by the velocity of steady ascent 
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of the cavity U,,,, ab and Jab respectively, 

We shall also use the fact that the vector 
stream function of the solid phase $,s so that 

and 6 = v&J,, = kJIU,a,. 
w is solenoidal and introduce the dimensionless 

(1.6) 

Wow let p+*(&q) be the function harmonically conjugate to pj(&q). Then by virtue of 
the Cauchy-Riemann conditions we have 

(1.7) 

Substituting (1.6) and (1.7) into (1.5), we obtain the following expressions for the fluid 

phase velocity components: 

v&=&&('p.+ Q-P)* %==- +=+ (9, + @V) 

from which it follows that the required velocity field of the fluidizing agent is described 
by the stream function 9, =$ $- 6pf*. The function $, in the last relation is determined 
uniquely by the complex flow potential of the solid phase given by the expression /8/ 

w,(+-+ct& (1.8) 

g=f+iq, z=z+iy=yctg+. y=sinF=$ 

(z and ZJ are rectangular Cartesian coordinates (Fig.1)). The parameter R characterizes the 
various forms of the cavities under consideration, n = 0 corresponds to a cavity in the form 
of two circles of equal radius in contact with each other, for n = 1 the cavity has the form 
of an isolated circle, and when n = 2, its boundary degenerates to a segment of the axis 
of symmetry of length 2h. Fig.1 depicts the case of n~(O,i). If on the other hand nE(1.2), 
the cavity has the form of a lens. 

Separating in (1.8) the imaginary part we find, that the flow of solid phase is described 
by the stream function 

(1.9) 

which corresponds to the flow of an ideal incompressible fluid, homogeneous at infinity, past 
a rigid vertical wall e = 0 with an obstacle in the form of a circular segment 5 = nn/2, or 
of a figure symmetrical about the straight line E = 0 consisting of two circular segments. 
To obtain the velocity field of the fluidizing agent , it remains to findthepressure distribu- 
tion pf outside the rising cavity, having already constructed the solution of (1.4) with 
boundary condition (1.2) and the condition at infinity (1.3). 

We know from the filtration theory that problems of this type are equivalent to determin- 
ing the complex potential of a plane flow. We shall therefore determine p, and p,* as follows. 
Let an analytic function W be found in any manner, such that 

Turning vow to (1.4) and conditions (1.2) and (1.5) written in dimensionless form, we 
conclude by virtue of the uniqueness of the solution of the Dirichlet problem for the Laplace 
equation, that pi = Im W,p,* = Re W. Obviously, the analytic function W defined by conditions 
(1.10) represents the analogue Of the complex potential of the flow past a body of prescribed 
shape, of an ideal fluid, in a direction antiparallel to the z axis of a rectangular Cartesian 
coordinate system. 

We construct the function W by conformal mapping onto the unit circle /8, 9/. The 
simplest case is that of n = 0, when the region mapped onto the z plane has the form of two 
unit circles touching each other. This configuration corresponds to a cavity formed by two 
identical circular bubbles merged at a single point, or to a single bubble near a vertical 
wall. 

The sequence of mappings of the interior of a region in the z plane onto a unit circle 
in the (I plane is shown for the case n = 0 in Fig.3. 

The mapping function is 
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da a(z)==ct~-g, u(w)==oo, 73;1 ,,-“& I II (l.llj 

The analogrie of the complex flow potential in the 5 plane has the simple form wtcj - 
-(U + a-'), and this finally yields the following expression, taking the normalizing conditions 
in (1.11) into account: 

W(z)=- -+, ++ tB+ 
We generalize the latter relation to the case when n#o by first writing 

for the complex flow potential of the solid phase around the cavity of the type 
In the limit, as S-to, we obtain from (1.8) 

Fig.3 

Comparing (1.13) and (1.12) and using the genersl expression (1.8) for the complex 

(1.12) 

the expression 
in question. 

(1.13) 

potential W,(c), we construct the desired function W(c) for n# 0 in the form 

w(r)=-+(ctg&+tg&), z=YCtg+, 0<5<2 (1.14) 

Let us check whether the function constructed satisfies condition (1.10). Differentiating 
(1.14) we obtain 

Passing now to the limit as e-O,n-0, i.e. G-O), which corresponds to moving away 
from the cavity (a-co), we obtain 

dW'd"E 
-1, i.e. a(ImW){&t-;,-1 

.?- 

Moreover (ImIV)IS=O, which can be confirmed directly from (1.14). 
Separating the real and imaginary parts in (1.141, we obtain the pressure distribution 

and stream function of the fluidizing agent in the form 

p,='ImW(++Sh +,~(,h+,o+)-’ (1.15) 

*‘r=%+SR@W(C)= (i.l6} 
%J - -;;-siny E Schn 

I 
E ~-.-eOS~ 
N 

25 ch-;;--cocos _%)-I 

2. Regions of closed circulation and modes of fluid phase flow, From (1.16) 
it follows that in the case when the velocity of steady ascent of the cavity go,, exceeds 

the velocity of fluidiaation vls i.e. 8 3 v&J,,<%, a region of closed circulation of the 
fluidizing agent (a cloud) appears near the cavity. The cloud boundary is described by the 

equation 
E Sch+-cm-==0 ?I wt 

When S>i, Eq.(2.1) has no real solutions. fn this caSe no closed stream lines form 
in the fluid phase near the cavity, i.e. we have a continuous-type flow. Fig.4 depicts the 
evolution of the cloud boundary as a function of S for the case when n*O. 

Henceforth, we consider the ca5e of a circulation mode of the liquid phase flat? IQYAV> 

vo) in which the ascending cavity is surrounded by a cloud. The gas trapped within the cloud 
circulates with great intensity, So that it is natural to assume complete mixing in the fluid 
phase and the constancy of the reagent concentration within the cloud. 
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3. Mass transfer between the cavity and the 
continuous phase. We shall consider the case when the 
Peclet number defined in terms of the characteristic size of 
the region of closed circulation 1, the velocity V,,-V~ of 
motion of the cavity relative to the homogeneous flux of the 
fluid phase and the effective diffusion coefficient I), is 
laxge compared with unity Pe = 1 (V,, - v,)iD> 1. In this 
case the resistance to mass transfer towards the cavity is 
centered, near the cloud boundary, in the region of the 
diffusive boundary layer (/lo/ et al.). The problem of mass 
transfer between the cavity and the continuous phase of the 
flui.dized bed is thus reduced to computing the diffusive flux 
towards the cloud boundary /5/. 

Fig.4 

The steady concentration field of the reacting species 
in the region outside the cloud is described by the equation 
of steady convective diffusion. We shall write this equation, 
together with the condition reflecting the perturbation-free 
state of concentration away from the cavity and the complete 
absorption of the dissolved material at the cloud boundary, 
in the following, dimensionless standard form: 

Rere v and x denote the normal and tangential coordinates attached to the surface SC 
bounding and cloud, whose equation in the (v, x) coordinate system has the form v - vo; gw, 

& are the components of the metric tensor g = g,.,,g%,. The concentration c is counted 
from its value witbin the cloud with closed circulation, and is referred to the value of the 
concentration away from the cavity. 

We note that the condition of quasistationarity of the diffusion process within the 
diffusive boundary layer is FE+ tD where T is the characteristic tim@ of the bubble remain- 
ing within the bed: T = LIU,,, (L is the linear dimension of the reactor) and tD is the 
characteristic diffusion time (the time taken for the diffusive boundary layer to become 
established): tv = 6$/D = FD-IPe-1 (SD is the thickness of the diffusion boundary layer 'D-' 
I Pe+). 

We use the method of matching the asymptotic expansions to obtain approximate solution 
of (3.1). The method is based on separating from the flow space regions within which the 
flow can be simplified after equating the orders of separate terms of the equation. The 
solutions of the simplified equation (3.1) are obtained for every single region, and become 
matched at their boundaries. 

Following the method, we introduce in the region of diffusion boundary layer a stretched 
normal coordinate Y according to the formula 

Y = P&(v - VP), Y = O(l) (3.2) 
The region of diffusion boundary layer is described in the (Y,x) coordinates by the 

relations 
v - v. Q Pe-‘JnY, x- Q x < x+ - 0 (Pe+*) (3.3) 

where the coordinates x- and %+ correspond to the leading andtrailing stagnation points. 
In the region of trailing stagnation point where v-v0 < Pe-'fly, x+ -O(Pe++ <x < x+, the 
diffusion boundary layer approximation is not suitable /lo/. The contribution of this 
region to the total flux of material to the surface v = v,, is,however small, compared with 
that of the region of thediffusion boundary layer /lo/, and is therefore disregarded, 

Estimation of the order of magnitude of the terms of (3.1) in the region (3.3) is based 
on expanding the stream function of the fluidiring agent in a series in powers of Y - vg 
near the cloud boundary. The expansion has the form 

Using expressions (3.3) and (3.4) we can reduce (3.11, after discarding terms of higher 
order of smallness in the parameter Pt+ to the equation of beat conduction * (See: 
Gupalo Yu.P., Polyanin A-D. and Ryazantsev Yu.S. Mass transfer between a bubble drop and 
laminar fluid flow at large Peclet numbers. Preprint In-ta prikl. mekhaniki Akad. Nauk SSSR, 
Moscow, No.120.1 
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Here 2 is the Mises varibfe 2 = Yf(%), and the new variable % is connected with the 
coordinate x by the relation 

T (x, x-) =5 1 i vx” (A+) f=ddS 1 (3.6) 
s-7 

where the superscript*~~meens that the quantity in question is taken at the surface v = vg. 
The boundary conditions for (3.5) are 

Z-cm,c~~;Z~O,c=.0;Z#0,7~O,c~i (3.7) 
(the first and third condition follows from the condition of matching with the unperturbed 
concentration field in the outer region, and the second condition follows from the second 
condition of (3.1)). 

The solution of problem (3.~5)~ (3.7) yields the concentration distribution in the 
region of the diffusion boundary layer, and has the form fll/ 

c(Z, t)=erf -E- ( 1 26 

Differentiating (3.8) along the normal to the cloud surface, we obtain an expression for 
the local dimensionless diffusion flux onto this surface 

The total material flux to the boundary of the region of closed circulation in the two- 
dimensional problem, is then equal to 

Here S, is the cloud surface defined by (2.1). Let us introduce on it a natural matric 

by putting gL = 1. In this case the coordinate x represents simply the cLoud boundary arc 
length. Calculating the value of %(x-,x+) in (3.9), we pass to coaxial coordinates (&r)) 
introduced above, remembering that 

(3.10) 

Using the coordinates f&q) we obtain the equation of the cloud boundary in the form 
g = E(p) directly from (2.1). 

Using (3.10) we transform (3.6) for the variable z to the form 

since in coaxial coordinates gkk -i gss. 
we will reduce the stream function of the fluidizing agent obtained in Sect.1 to dimsn- 

sionless form, by introducing the quantity &,v-- v,, as the characteristic velocity and the 
characteristic size of the cloud 1 as the length. From (1.16) we obtain 

9t= 
‘I, 49 . -- 

1 -p Trszn n 
-+h 

From this, remembering that g&t = gin = uagv/(ch q - ces &)P, vxa = (%% f v,,*)'/~, and taking 

into account the expressions for the fluid phase analogous to (1.61, we arrive at the final 
formula for the integral flux 

(3.12) 

The mean Sherwood number obtained from (3.12) is (S is the mass transfer coefficient) 

Sh++=+ _ 41,;:" ( I )'"(#'(+~_4(+in+)lh (4;;;)" ( “b? )‘I’ (3.13) 
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Let us consider a number of special cases corresponding to particular forms of the 
ascending cavity. 

A single circular bubble of radius ab. In this case the expression for the mean Sherwood 

number follows from (3.13) with n=l and ad2 = ((1 - 6)/(i+ @)'I* (the cloud boundary is a 

circle of radius ((1 -I- 6)/(1 - 6)) sb) 

‘I’ 
(3.14) 

which agrees with the result obtained earlier in /5/. 

Two equal circular bubbles of radius ab touching each other. Passing in (3.13) and 

(2.13) to the limit as n+0, we obtain the following expression for the mean Sherwood number: 

A single circular bubble of radius ab rising along a vertical rigid wall. Here the 

result (3.15) for the mean Sherwood number is halved. 
We recall the relations (3.12)-(3.15) were obtained under the assumption that Pe = 1 

(Vu,, - VW > 1. For the slowly ascending cavities, when ueap+vO, the formulas shown hold 
provided that 1 -S> Dnl(2h/Umv) (here the half-width of the cloud 1 = h/tg('l,n*arccos6) is 
taken as its characteristic dimension). 

Relations (3.13)-(3.15) enable us to assess the variation in the total material flux at 
the cloud surface relative to the deformation of the initial circular cavity. We shall assume, 
as is often done in engineering calculations /l-3/, that the ascent rate of the cavity 
depends only on its volume (area) and not on its form, so that cTCsV = U,,,(I). Rewriting (3.13) 

and (3.14) in terms of the areas I of the corresponding figures, we obtain 

sa sinsa -% 
n-z+- 2 ) 

(1 - (1)'" E% (3.16) 

(3.17) 

We shall also assume that the cavity volume is not affected by its deformation (I = cone& 
Dividing (3.16) by (3.17), we arrive at the following expression for the ratio of the total 
material fluxes to the cloud in the course of the deformation of the circular cavity: 

‘7 (n) = 2-v. (n-l sjn 9)“’ ( f - + + *)-” (3.18) 

Analysis of relation (3.18) depicted in Fig.5 shows that deformations of the cavity lead, 
in general, to an increase in the intensity of mass transfer to the continuous phase. The 
increase in the material flux to the cloud is small for all values of n, except at R = 2. 
Thus, if a single circular bubble is deformed into a double bubble (n= 0. see Fig.Z), the 
increase is of the order of 5%. 

A more accurate assessment of the variation in the diffusive material flux to the cloud 
surface when the bubble is deformed, can be carried out provided that the relation connecting 
the coefficient of resistance and the middle cross-section of the ascending cavity with its 
form, is known. 

Writing in the usual form the balance of dynamic pressure in the flow impinging on the 
deformed bubble andthe force propelling it upwards, we arrive at the following expression for 
the velocity of ascent of a two-dimensional cavity: 

U cIp = Kl;$, K =@g.I/c,)" (3.19) 

Here cX is the heat resistance coefficient and 'mid is the length of the middle cross- 
section of the cavity. 

Formula (3.19) allows us, unlike the earlier assumption that Cl,, = U,,(Z), to take into 

account the dependence of the variation in the velocity of cavity ascent on its form. 
The ratio Of integral fluxes at the cloud surface after and before the deformation can 

be written using (3.16), (3.17) and (3.19) in the form 

(3.20) 

Here the expression within the square brackets represents the ratio of the bubble diameter 
to the length of the middle cross-section after the deformation, the function F(n)is given 
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by (3.18) and U,is the rate of ascent of the bubble. 
When the cavity volume 

F 
of the form discussed here, 
of its middle cross-section 

remains unchanged under a deformation 
the following expression for the length 
holds: 

I. where a?, is the bubble radius prior to deformation. Without the 
deformation we have (n= l)lm,mla= 2ab, when a double bubble forms we 
have (n = 0) lml,, = 2)I&,. and when the bubble stretches along the 
stream, we have (II'-2)&,-O. 

It follows from (3.201, in particular, that when the bubble 

0 1 n 2 is deformed along the flow (i<n< 2,1mid<2aa, Uav> u,), the mass 
transfer process is intensified compared with (3.18), obtained when 

Fig.5 the form of the bubble in unchanged , since the increase in the 
integral material flux to the cloud is related not only to the increase in its surface area, 
but also to the increase in the rate of ascent of the cavity. Conversely, when the deforma- 
tions take place in a direction transverse to the flow (O<s<l, zmM>2ab, u,,< U,), the 
increaseinthe cloud area is compensated by the slower ascent of the bubble, so that the 
material flux to the cloud may, in effect, be reduced. 

The results obtained enable us to estimate the variation in the mass transfer coefficient 
in processes such as coalescence of two or more single circular bubbles, splitting of a single 
circular bubble and motion of a bubble along a rigid vertical wall. 

Thus, in the first case it follows from (3.17) that when a large number m of identical 
circular bubbles infinitely distant from each other at the initial instant, coalesce, the 
mass transfer intensity is reduced in accordance with the formula 

m Sh/Sh, = m'la(l - @)'h (1 - &aJI*)-'~ -_m'l@ > 1 

for large m. The Sherwood number Sh corresponds here to a single circular bubble, the quan- 
tityd is found from its rate of ascent, and the quantity She characterizes the mass transfer 
with the continuous phase of the bubble resulting from the coalescence. 

Conversely, when breakup occurs the mass transfer is intensified 

Sba/(m Sh) wrn-'I* < 1, m > i 

which is explained by the increase (after breakup) in the area of contact of the "total cloud" 
with the continuous phase. Clearly, the mass transfer will increase still more, provided that 
the breakup produces bubbles small enough to become non-circulating, @>I). 

Relations (3.14) and (3.15) also imply that in the case of a circular bubble moving 
along a rigid wall, the material flux towards the cloud surface will be reduced by almost 40% 
because of the wall screening effect, compared with the case of identical size bubbles ascend- 
ing at the same rate through an unbounded medium (the ratio of the integral fluxes is 1/;58~ 

0.627). 
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